
Keeping Simple Things
Simple

in Data Processing
Elango Cheran
April 15, 2016

Functional Programming

• Separate data and functions

• “Methods” => OOP Objects

• Methods => functions tied to data =>
complected => :-(

Functional Programming and
Object Oriented Programming

• Are these notions compatible?

• How many functional languages do not embrace
OOP?

• How many languages overall do not embrace
OOP?

Data Oriented Programming

• Represent and manipulate data, unadorned

• Promote plain data structures

• Promote common data operations

• Don’t complect with type hierarchies, objects,
etc.

• Any language can do this

Tradeoffs of Being Data
Oriented

• Costs of plain data

• Static typing - type safety (compiler checking)

• Objects do “encapsulation”

• Are you willing to sacrifice safety??

Tradeoffs of Being Data
Oriented

• Gains of plain data

• Simplicity and power

• Are you willing to lose all that power??

• Do most people know what they’re missing? (blub)

• Tradeoffs

• No right/wrong, but a choice based on a value
system

My Assertion
• Static typing is great when…

• The requirements are known ahead of time and don’t
change

• The extra value given by static types is more than it
costs

• Examples: banks, airplanes

• The abstractions become powerful but have more
inertia

My Assertion
• Dynamic typing is great when…

• Requirements change and grow

• Flexibility and power give benefits via concise code

• Examples: most everything

• Code can organically become DSL-like but requires
strong discipline

• Disclaimer: you always want schemas around the data
passed between components

The gap
• Most people understand static typing

• Most people understand object oriented
programming

• Most people don’t understand the simplicity that
they’re missing

• (Or the complexity that they’re living with, but
that’s hard to show without a comparison)

Clojure, simplicity, and data
• Eschews OOP paradigm

• Namespaces are used to organize data and functions

• No extra hoops to use data or functions

• Instantiation, access modifiers, type hierarchies, etc.

• Everything can be treated as plain data structures

• Maps - objects/beans/structs/records/case classes

• Vectors + maps = JSON, but Clojure/EDN is more practical
and extensible

Example 1 - serving up DB
data to a webpage

• You can't reach into a DB directly from a webpage

• Need to run a web server

• Fetch results from tables (SQL), serve up as JSON
for JS libraries

• Each monitoring metric stored in a separate table
with separate schema and custom column names

• Need to convert DB rows to JSON

DB rows

JSON

DB rows

JSON

nested
object

munging

Example 1 - serving up DB
data to a webpage

Clojure:
(defn rows->json 
 "take the seq of maps that clojure jdbc gives you
as a query result and format as json" 
 [rows] 
 (let [new-rows (map normalize-row rows)] 
 (json/generate-string new-rows)))

Clojure
plain data
structures

DB rows

JSON

Example 2 - dealing with nested
IDL schemas (Avro/Protobuf)

• Scenario: have to deal with many, many nested
Protobuf + Avro messages

• Avro is the most interesting part

• Avro was designed for Hadoop, is the defacto
schema/serialization format

• Writing / printing serialized data is difficult

Example 2 - dealing with nested
IDL schemas (Avro/Protobuf)

• My pet project: create a function to take an Avro Schema object and return N
random records adhering to the Schema

• Allow Schema to contain nesting, enum types, array types, and union types

• Logic impl:

• Schema obj -> JSON (via toString) to get structure

• Convert JSON -> nested map

• Nested map to smaller Clojure data structure to simplify

• Clojure data structure + Avro library -> serialized binary

• Clojure data structure ->  
generators of Clojure data structures ->  
generators of serialized Avro binary

Clojure
plain data
structures

DB rows

JSON

Avro
Schema

Clojure
plain data
structures

DB rows

JSON

Avro
Schema

Avro
records

Clojure
plain data
structures

DB rows

JSON

Avro
Schema

Avro
records

test.check
generators

Clojure
plain data
structures

DB rows

JSON

Avro
Schema

Avro
records

test.check
generators

Clojure
plain data
structures

DB rows

JSON

Avro
Schema

Avro
records

Protobuf
schema

Protobuf
messages

test.check
generators

Clojure
plain data
structures

DB rows

JSON

Avro
Schema

Avro
records

Protobuf
schema

Protobuf
messages

test.check
generators

Example 2 - dealing with nested
IDL schemas (Avro/Protobuf)

(defn record-gen-with-overrides 
 "given an Avro schema, returns a generator of Avro records as Clojure maps
(unserialized) 
the override-map is a map of vectors (of strings) to generators. the vector of
strings (map key) indicates the nesting of the field, and the generators (map value)
will be used instead of default generators to generate values in that field" 
 [schema override-map] 
 (let [json-str (.toString schema) 
 json-map (json/parse-string json-str) 
 schema-clj-map (schema->clj-map json-map) 
 new-schema-clj-map (override-schema-clj-map schema-clj-map override-map) 
 clj-record-gen (schema-clj-map->generator new-schema-clj-map)] 
 clj-record-gen))

Example 3 - configuration

• Scenario: you want to handle configurations
intelligently

• Different configurations for: (production, qa, dev)
and (unit test, integration test)

• You want unit test configs to just override a few
settings from default dev settings

Example 3 - configuration
• One way I've done configuration is using HOCON (Typesafe

Config)

• Config objects are immutable (yay!)

• Config is an object in a class hierarchy with interfaces, etc.

• Operations:

• merge - withFallbackConfig

• no real way to assoc-in

• Difficult to create a Config from literal data (ex: literal Map)

HOCON Example

val INPUT_FILTER_MAP_CONFIG_PREFIX = "myapp.input-filter-map" 
 
val INPUT_FILTER_MAP = { 
 val pathPrefix = INPUT_FILTER_MAP_CONFIG_PREFIX + "." 
 Map( 
 (pathPrefix + "key") -> Seq( 
 "val1",  
 “val2”,
 ... 
).asJava,
 ...
) 
 }

def reformatConfig(config: Config): Config = { 
 val newInputFilterMap = INPUT_FILTER_MAP 
 val newInputFilterMapConfig = ConfigFactory.parseMap(newInputFilterMap) 
 val newConfig = newInputFilterMapConfig.withFallback(config) 
 newConfig 
}

Example 3 - configuration

• The secret: configuration is data, too

• Represent everything as maps

• Use merge, merge-with, assoc, assoc-in, update,
update-in, …

• This is what the many Clojure config libraries do
(environ, et al.)

Clojure
plain data
structures

DB rows

JSON

Avro
Schema

Avro
records

Protobuf
schema

Protobuf
messages

test.check
generators

configuration
(HOCON, .props,

env vars)

Clojure
plain data
structures

DB rows

JSON

Avro
Schema

Avro
records

Protobuf
schema

Protobuf
messages

test.check
generators

configuration
(HOCON, .props,

env vars)

core fns for plain data

Example 4 - testing

repl> parse(""" { "numbers" : [1, 2, 3, 4] } """)  
res: JObject(List((numbers,JArray(List(JInt(1), JInt(2), JInt(3), JInt(4)))))) 

// if writing a test that uses this as the expected value 
val expectedJson = JObject(List((numbers,JArray(List(JInt(1), JInt(2), JInt(4),
JInt(3))))))

// you’ll get something like this:
ERROR: expecting [JObject(List((numbers,JArray(List(JInt(1), JInt(2), JInt(4),
JInt(3))))))] was [JObject(List((numbers,JArray(List(JInt(1), JInt(2), JInt(3),
JInt(4))))))]

Example 4 - testing
(def exp-map {"numbers" [1 2 4 3] "letters" ["b"]}) 
 
(expect exp-map (json/parse-string " { \"numbers\" : [1, 2, 3, 4], \"letters
\" : [\"a\"] } "))  

;at the CLI when running lein test =>

(expect
 exp-map
 (json/parse-string
 " { \"numbers\" : [1, 2, 3, 4], \"letters\" : [\"a\"] } "))

 expected: {"numbers" [1 2 4 3], "letters" ["b"]}
 was: {"numbers" [1 2 3 4], "letters" ["a"]}

 in expected, not actual: {"letters" ["b"], "numbers" [nil nil 4 3]}
 in actual, not expected: {"letters" ["a"], "numbers" [nil nil 3 4]}

Clojure
plain data
structures

DB rows

JSON

Avro
Schema

Avro
records

Protobuf
schema

Protobuf
messages

test.check
generators

configuration
(HOCON, .props,

env vars)

core fns for plain data

Clojure
plain data
structures

DB rows

JSON

Avro
Schema

Avro
records

Protobuf
schema

Protobuf
messages

test.check
generators

configuration
(HOCON, .props,

env vars)

core fns for plain data

Specter, medley, …

Example 5 - Spark
• Serializing in Spark -> Kryo

• Must register serializer for every type put into an
RDD

• Function values (closures) must have serializable
environment

• If you want to deal with Avro data in Spark, you
need to create a case class to wrap each Avro
generated class

Example 5 - Spark

• Regular Spark serialization - an excerpt

kryo.register(classOf[Array[Boolean]]) 
kryo.register(classOf[Array[Double]]) 
kryo.register(classOf[Array[Short]]) 

// more stuff copied from common Kryo registrator 
kryo.register(classOf[Array[(_,_)]]) // why doesn't chill handle this? 
kryo.register(classOf[Array[Object]]) // why doesn't chill handle this? 
kryo.register(classOf[Array[scala.collection.Iterable[_]]]) 
kryo.register(classOf[scala.collection.immutable.::[_]]) 
kryo.register(Class.forName("scala.collection.immutable.Nil$"))

Example 5 - Spark
• In Clojure, if you use plain data structures, Flambo

has your Kryo needs covered

• Clojure's pr / pr-str is a "serializer", read is a
"deserializer"

• Nippy is a more efficient de-/serializer for Clojure
data, with other benefits

• Flambo (Spark), Datasplash (Dataflow), etc.
already include Nippy on your behalf

