
Prefix Trees (Tries) for Tamil Language Processing
Elango Cheran

July 2017

Enabling Tamil language computing on each new technology platform requires ensuring that
each layer of the technology stack supports the language. While it is useful to assess what
those layers are, and the progress that has been made for Tamil over the years, it is also
important to look forward to solving future problems that need work at higher-level layers.
Towards that goal, the prefix tree (trie) is an important data structure that can be used to enable
basic Tamil language operations that enable more advanced work for Tamil to be done. The
ways in which we can apply prefix trees for Tamil are general enough that they would very likely
apply to other Indic languages, too.

A prefix tree is a special type of tree data structure that is used to efficiently store several strings
that may share various prefix substrings in common with each other. Each letter of a string is
stored as a node, with each subsequent letter stored in a child node of the previous letter’s
node. For example, if we constructed a prefix tree to hold the strings [bot, bow, be, bed, go,
got], it would look like:

!

Figure 1: a prefix tree constructed from a list of strings

More generically, prefix trees can contain sequences made up of (a set of) elements. Most
commonly, prefix trees are used to represent strings, and strings are merely sequences of
characters. Following each path from the root of a prefix tree to a leaf node will contain the
ordered elements of an input sequence. In Figure 1, a leaf node is represented as “nil”, which
can be considered like an end-of-word marker that is not a part of the tree’s input sequences.

There are some easily solvable challenges in the basic processing operations of Tamil text for
which prefix trees offer a natural solution. To explain those challenges, let’s first examine the
English example in Figure 1. In the Unicode character set, every English letter is represented
by a single Unicode codepoint in the specification. In a programming language like Java which
supports Unicode, these codepoints each map to a single Character value, where the Character
refers to the data type as provided by the programming language. So an implementation of a
prefix tree that only supports English could have each internal tree node hold a single Character
value. The Unicode specification for Tamil (and other Indic languages) represents the logical
letters of the alphabet sometimes with more than codepoint. Letters like அ..ஔ (vowels, or
உ$ெர't)) and க..ன (consonant+”a”, or அகரெமyெய/t)) are all represented by one
codepoint. Letters like k (consonant, ெமyெய't)) and கா..ெகௗ (C+V except C+அ,
அகரெமyெய't) த4ர ெமyெய't)) are represented by two successive codepoints in
Unicode. See Figure 2. In the end, there is a one-to-one correspondence between a Tamil
Unicode character sequence and the logical Tamil text that it creates, and that is the ultimate
goal of any universal language encoding specification. Any challenges to deal with the text
thereafter at a higher level are technical ones for software developers.

Figure 2: a list of words, letters, and Unicode points for English and Tamil

Text Logical letters Number
of logical
letters

Text Unicode
codepoints

Number of
Text Unicode
codepoints

go g, o 2 g, o 2

got g, o, t 3 g, o, t 3

bot b, o, t 3 b, o, t 3

bow b, o, w 3 b, o, w 3

த5 த, 5 2 த, ண, i (0BBF) 3

த5ைக த, 5, ைக 3 த, ண, i (0BBF), க, 9
(0BC8)

5

வ;ைக வ, ;, ைக 3 வ, ர, u (0BC1), க, 9
(0BC8)

5

வ;க வ, ;, க 3 வ, ர, u (0BC1), க 4

The above description of how to map Tamil language letters into the corresponding Unicode
codepoint(s) already reflects the challenge somewhat. Figure 2 shows not only the difference
between number of logical letters and codepoints, but it also shows the counter-intuitive
property that the character sequence of வ;க is a subset of வ;ைக. For these reasons, one of
the first tasks that naturally arises when dealing with Tamil text in Unicode is to convert the
character sequence into a sequence of strings representing the logical letters. This parsing
task, like any other stateful task involving transitions between states, can be represented by a
finite state machine (FSM). The FSM represents all of the logic used to enumerate the states
and determine the conditions required in order to transition from one particular state to another.
Parsers naturally can be described using FSMs, and in the case of parsing Tamil text, the FSM
containing all valid transition paths is the prefix tree itself. Thus, the prefix tree containing the
string representations of all logical Tamil letters is the simplest mechanism for writing code to
parse Tamil text (Figure 3).

�
Figure 3: a prefix tree containing each Tamil letter’s character sequence representation

For example, a Tamil text-to-letter parsers written in more imperative code will require complex
logic for consonants since there must be a peek ahead at the next character (if there is one) to
distinguish அகரெமyெய't) (C+அ) from ெமyெய't) (C) or any other உ$rெமyெய't)
(C+V). In the case of வ;ைக, after parsing the வ, the next character in the stream is ர. Until
we look ahead at the next character, we won’t know if ர is the full letter (in the case of the word
வர>) or if the next character should be combined for the full letter (in the case of வ;ைக, where
the next character after ர is u (0BC1)). The imperative style implementation also requires
verbose nested if-else statement logic. However, a prefix tree offers the operation of longest
shared prefix, meaning that given an input string, it will return the longest string in the prefix tree

shared with the input. In the English example, with an input of “gothic”, the prefix tree will return
“got”, even though “go” exists in the tree and is also a prefix. This operation is exactly all that is
needed for Tamil text-to-letter parsing. See Figure 4:

Figure 4: the input and output of a prefix tree’s longest shared prefix function

The discrepancy in approaches is more apparent for letters with longer Unicode codepoint
sequences. Some Grantha letters in Tamil text require up to 4 codepoints. An imperative style
parser code may need a 4-level nested if-else block, but the prefix tree-based parser code
remains unchanged. Dealing with letters requiring more than 2 characters is an infrequent case
for Tamil text, but it is perhaps relevant and significant for other Indic languages.

It is important to take note that many useful Tamil language operations do not happen at the unit
of a letter (எ't)) but instead at unit of a phoneme (ஒAயB). Tamil, as an agglutinative
language, encodes much grammatical information through word suffixes. Suffixes (4CD) are
so common that the basic rules governing word changes when adding suffixes are given a
name (சnD, “sandhi” - to meet). A simple case to show the importance of phoneme units over
letter units for grammar would be to indicate “and” for a compound subject, indicated by adding
“-உm" to each subject. For the words மாமா and மாH, the sandhi rules imply the changes மாமா
+ (v) + உm = மாமா>m and மாH + (y) + உm = மாHJm, resulting in “மாமா>m மாHJm". The
inserted v and y is based on the vowel sound of the final letter in both words, not the final
letter’s consonant sound. The words அkகா and அKணா also add v, whereas தŋைக and
தmπ add (y).

Figure 5: letters vs. phonemes for Tamil words

Input string Output from Tamil letter prefix tree’s
longest prefix function

வ;ைக வ

;ைக ;

ைக ைக

Word Letters Final letter Phonemes Final
phoneme

Sandhi change
(-உm)

மாமா மா, மா மா m, ஆ, m, ஆ ஆ v

மாH மா, H H m, ஆ, m, இ இ y

அkகா அ, k, கா கா அ, k, k, ஆ ஆ v

தŋைக த, ŋ, ைக ைக t, அ, ŋ, k, ஐ ஐ y

அKணா அ, K, ணா ணா அ, K, K, ஆ ஆ v

தmπ த, m, π π t, அ, m, p, இ இ y

There are extra sandhi rules applied in the case of noun case suffixes (ேவSTைம). For two
words with the same last letter, மU and காU, adding the same case suffix “-இl" operates
differently. For மU, the change is simpler: மU + (v) + இl = மU4l. For காU, an arithmetic on
the word happens first: காU + -இl = (k, ஆ, W, உ) - உ + W + (இ, l) = காWXl. Because of the
final -W, the final -உ is dropped, the -W is doubled, and then the இl is added.

We can use a prefix tree to split a Tamil word into phonemes by modifying the tree to allow a
value to be associated with each leaf node (input string), much like a map/dictionary. Each
Tamil letter string in the tree is associated with its phoneme sequence: Y -> [k, இ]; Z -> [k,
ஊ]; k -> [k] (Figure 6). Linguistic operations in Tamil often operate on a sequence of
phonemes and return a sequence of phonemes (Figure 7). Given phonemes, a prefix tree can
be created that converts the phoneme sequence back into regular Tamil text (Figure 8).

Figure 6: the input and output of a Tamil letter prefix tree modified to be associative

(வைரயT-ெசயlZT ேவSTைம-µB-மாSறm
 [ெசாl]

 (ைவt)kெகாll [
 எ't)கll (ெதாைட->எ't)கll ெசாl)
 ஒAயBகll (ெதாைட->ஒAயBகll ெசாl)
 கஎ (கைட` எ't)கll)
 கஒ (கைட` ஒAயBகll)]

 (ெபாTt)
 ...
 (= "U" கஎ)
 (ெசயlபUt) ெதாைட (ெதாU (கைட`$Bb எ't)கll) ["WW"]))

 (= "T" கஎ)
 (ெசயlபUt) ெதாைட (ெதாU (கைட`$Bb எ't)கll) ["SS"]))

 :அBb
 ெசாl)))

Figure 7: a function to prepare a noun for adding a case suffix (ேவSTைம)

Input string Output from Tamil letter prefix tree’s
associated phoneme sequence

காU [k, ஆ]

U [W, உ]

Figure 8: the input and output of a prefix tree constructed as the inverse of Figure 6’s tree

Using prefix trees that have been modified to be associative, we can easily define conversions
from Tamil text to the old pre-Unicode encodings (and vice versa). More importantly, once we
start to think of Tamil text less in terms of the underlying character sequences and more as
sequences of logical letters or logical phonemes, implementing other operations becomes
clearer. For example, true lexicographical sorting can be achieved for Tamil by splitting a word
into letters and combining with a lookup map that indicates the relative ordering of each letter. If
we define the lexicographical ordering of Tamil letters as [அ, ஆ, …, ஃ, k, க, கா, …, ெகௗ, ŋ, ங,
…, B, ன, …, ெனௗ], our lookup map would be {அ 0, ஆ 1, …, ஃ 12, k 13, க 14, கா 15, …, ெகௗ
25, ŋ 26, ங 27, …, B 235, ன 236, …, ெனௗ 247}. Then sorting Tamil words becomes
equivalent to sorting sequences of numbers, which is straightforward. In a sense, sorting
sequences of numbers is equivalent to sorting English text because of the one-to-one mapping
of English letters and Unicode codepoints.

Once we use the appropriate data structures to model our domain more accurately, the
functions we need to solve our basic problems become clear, and we can begin to solve more
advanced problems. For example, an intelligent spell checker might use sequence alignment to
measure closeness, for which the 2 most basic methods are global (Needleman-Wunsch) and
local (Smith-Waterman). Using the phoneme representation of strings would not only fit the
algorithms’ designs, but it would also provide better results. There is much room to explore the
implications of a phoneme-based modeling of Tamil text (as is done in Korean and other
languages), but prefix trees offer a necessary first step in that direction, and they are general
enough to be applicable to other Indic languages, if not more.

An open-source library that implements these ideas, along with example projects in Java and
JavaScript using the library, including the above code, at: https://github.com/echeran/clj-thamil

Input string Output from inverse Tamil phoneme prefix
tree’s associated letter string

kஆWWஇl கா

WWஇl W

Wஇl X

l l

https://github.com/echeran/clj-thamil

